

SPACER CABLE

Compact Spacers System

- For aerial power distribution network
- For areas with trees and vegetation
- As alternative AAAC-S and MV-TIC

Network Benefit:

- Improved SAIDI and SAIFI
- Improved circuit density (up to 4 circuits on one pole)
- Protects against phase to phase clashing
- Less outages due to phase to phase and phase to phase flashover
- Usually no fault if a tree is touching the line for several days or even weeks
- Enhanced lightning protection owing to the presence of a messenger wire acting as a shielding wire
- Increased circuit density on new or existing pole lines over COMPACTLIGNTM or open wire type construction

GENERAL INFORMATION

SUPREME SPACER CABLE

20 kV Distribution Overhead Line

Aluminium round stranded compacted with XLPE insulated HDPE sheathed spacer cables.

Generally to IEC 60502-2.

2. d 2. d 3. l 4. s 2. d

CONDUCTOR

Round stranded compacted aluminium wire with water blocking tapes on interstice of wires

CONDUCTOR SCREEN
 Semiconductive compound

3. INSULATION

Cross-linked polyethylene (XLPE)

4. SHEATH

High density polyethylene Provided with UV, tracking and abrasion resistance

Conductor and Dimensional Data

Nominal		Conductor Diameter	Nomir	nal Wall Thio		
Conductor Area	Typical Conductor Stranding		Conductor Screen	XLPE Insulation	HDPE Sheath	Approximate overall diameter
mm ²	Pcs	mm	mm	mm	mm	
35	7 (1+6)	7.0	0.5	3,2	3,2	21,2
50	7 (1+6)	8.2	0.5	3.2	3.2	22.4
70	18 (1+6+11)	9.8	0.5	3,2	3.2	24.0
95	18 (1+6+11)	11.5	0.5	3.2	3,2	25,7
120	18 (1+6+11)	12.9	0.5	3,2	3.2	27,1
150	34 (1+6+11+16)	14.1	0.5	3.2	3.2	28,3
185	34 (1+6+11+16)	16.1	0.5	3.2	3.2	30.3
240	34 (1+6+11+16)	18.0	0.5	3.2	3.2	32,2
300	55 (1+6+11+16+21)	20.6	0.5	3.2	3.2	34.8

Electrical Data

Nominal	Current Rating for 30°C Ambient				Current Rating for 40°C Ambient			
Conductor Area	Still Air	0.5 m/s wind	1 m/s wind	2 m/s wind	Still Air	0.5 m/s wind	1 m/s wind	2 m/s wind
mm ²	Α	Α	Α	Α	Α	Α	Α	Α
35	151	182	198	214	128	163	178	194
50	181	218	237	257	154	195	214	232
70	226	271	296	322	192	243	266	290
95	276	330	361	393	234	295	324	354
120	319	380	416	454	271	340	374	409
150	364	431	473	516	308	386	425	465
185	420	495	544	595	356	443	489	536
240	498	585	643	704	422	522	577	634
300	575	671	739	809	486	599	662	739

Current ratings based on 90°C conductor temperature and 1000 W/m² solar radiation intensity.

Calculation method as used for the ratings in AS/NZS 3675 (Conductors - Covered overhead) and

AS/NZS 3008.1.1 Electrical installations - Selection of cables - etc.

ote 1: The maximum permitted normal operating conductor temperature for AAC or AAAC bare or Covered conductors must be limited to 80°C to avoid loss of strength. Refer AS/NZS 3675.

Note 2: These cables are designed only for use with approved PLP SPACER systems and as such any loss of strength when operating at 90°C is permitted with these systems.

Inte 3: The conductor temperature for ACSR bare or ACSR Covered conductors can be 90°C because the steel

Note 4: See appendix BB5 of AS/NZS 7000 for explanation regarding loss of strength due to operating

Compact Line Cable Spacer System provided by :

PREFORMED LINE PRODUCTS
The connection you can count on.

Note : This is only general information. For other specific requirement, please contact our market

Copyright 2015

ce : Jl. Kebon Sirih No.71, Jakarta 10340, P.O.BOX 4872 Jakarta 10001, Phone : (021) 3100525, 3101525, Fax : (021) 31931119, Telex : 61163 SUCACO IA

#ffice : Jl. Daan Mogot Km. 16, Jakarta 11850, P.O.BOX 6501 Jakarta 11065, Phone : (021) 6190044, 5402066, Fax : (021) 6192628, Telex : 43330 SUCACO IA

: Jl. Daan Mogot Km. 16, Jakarta 11850, P.O.BOX 6501 Jakarta 11065

Jl. Raya Cikarang Cibarusah, Km. 7,5 No. 20A, Pasir Konci-Desa Pasir Sari, Kec. Cikarang Selatan, Bekasi 17550

Jl. Raya Pejuang Km. 2, Bekasi Jl. Kalisabi No.61 Kel. Uwung Jaya, Kec. Cibodas, Tangerang 15138 - Indonesia

www.sucaco.com